Universality, non-Gaussian fluctuations and the search for the QCD critical point

M. Stephanov

U. of Illinois at Chicago

QCD phase diagram (contemporary view)

 \blacksquare Models (and lattice) suggest crossover turns into 1st order at some μ_B .

Location of the critical point vs freeze-out

Estimates from lattice MC:

- Systematic errors are not shown.
- So far lattice results disfavor $\mu_B < 200$ MeV.
- de Forcrand-Philipsen: maybe $\mu_B > 500$ MeV?
- Strong lat. spacing dependence:
 - continuum limit is still far?
 - role of anomaly and "rooting"?
 Wilson fermions might help.

Location of the critical point vs freeze-out

Final state is thermal

Thermal model 2008 (Andronic-PBM-Stachel)

Location of the critical point vs freeze-out

To discover the critical point and establish its location, one needs:

- Energy-scan experiments:
 - RHIC,
 - NA61(SHINE) @ SPS,
 - CBM @ FAIR/GSI,
 - NICA @ JINR
- Improve lattice predictions
- understand systematic errors
- Understand critical phenomena in the dynamical environment of a h.i.c. (understand background)
- develop optimal signatures

Talk summary

Solution Experiments measure for each event: multiplicities N_{π} , N_{p} , ..., momenta p, etc. These quantities fluctuate event-by-event.

● Typicall measure is stdev, e.g., $\langle (\delta N)^2 \rangle$.

- Universality tells how it grows at the critical point: $\langle (\delta N)^2 \rangle \sim \xi^2$. Correlation length is a universal measure of the "distance" from the c.p. It diverges as $\xi \sim (\Delta \mu \text{ or } \Delta T)^{-2/5}$ as the c.p. is approached.
- **●** Magnitude of ξ is limited $< \mathcal{O}(3 \text{ fm})$ (Berdnikov, Rajagopal).
- "Shape" of the fluctuations can be measured: non-Gaussian moments. As $\xi \to \infty$ fluctuations become less Gaussian (1/N effect).
- Higher cumulants show even stronger dependence on ξ (PRL 102:032301,2009):

$$\langle (\delta N)^3 \rangle \sim \xi^{4.5}, \qquad \langle (\delta N)^4 \rangle - 3\langle (\delta N)^2 \rangle^2 \sim \xi^7$$

which makes them more sensitive signatures of the critical point.

Critical mode and equilibrium fluctuations

$$\left[\bar{\psi}\psi - \langle \bar{\psi}\psi \rangle \equiv \sigma \right]$$

$$\langle \sigma^2 \rangle \sim (\Omega'')^{-1}$$

think $e^{-\Omega}$:

$$(\Omega'')^{-1} \to \infty$$

large equilibrium fluctuations

Magnitude of fluctuation and correlation length:

$$\langle \sigma(\boldsymbol{x}) \sigma(\mathbf{0}) \rangle \sim \left\{ egin{array}{ll} e^{-|\boldsymbol{x}|/\xi} & \quad ext{for} \quad |\boldsymbol{x}| \gg \xi \\ 1/|\boldsymbol{x}| & \quad ext{for} \quad |\boldsymbol{x}| \ll \xi \end{array}
ight.$$

$$\langle \sigma_{\mathbf{0}}^2 \rangle = \int d^3 \boldsymbol{x} \langle \sigma(\boldsymbol{x}) \sigma(\mathbf{0}) \rangle \sim \xi^2$$
 critical singularity is a *collective* phenomenon

 \bullet or n_B or T^{00} ? Because they mix, only *one* linear combination is critical.

Critical mode and equilibrium fluctuations

$$\left[\bar{\psi}\psi - \langle \bar{\psi}\psi \rangle \equiv \sigma \right]$$

$$\langle \sigma^2 \rangle \sim (\Omega'')^{-1}$$

think $e^{-\Omega}$:

$$\mu = \mu_E$$

$$(\Omega'')^{-1} \to \infty$$
 large equilibrium fluctuations

Magnitude of fluctuation and correlation length:

$$\langle \sigma({m x}) \sigma({m 0})
angle \sim \left\{ egin{array}{ll} e^{-|{m x}|/\xi} & ext{for} & |{m x}| \gg \xi \ 1/|{m x}|^{1+\eta} & ext{for} & |{m x}| \ll \xi \end{array}
ight.$$

$$\langle \sigma_{\mathbf{0}}^2 \rangle = \int d^3 \boldsymbol{x} \langle \sigma(\boldsymbol{x}) \sigma(\mathbf{0}) \rangle \sim \xi^{2-\eta}$$
 critical singularity is a *collective* phenomenon

 $\blacksquare \sigma$ or n_B or T^{00} ? Because they mix, only *one* linear combination is critical.

Fluctuations on the lattice

Baryon charge density - isoscalar.

Electric charge $Q = I_3 + B/2$.

No peak in isospin (nonsinglet) susceptibility.

Relation between σ fluctuations and observables

Consider example: fluctuations of multiplicity of pions (or protons).

▶ Free gas: n_p^0 – fluctuating occupation number of momentum mode p. Ensemble (event) average $\langle n_p^0 \rangle = f_p$ and

$$n_{p}^{0} = f_{p} + \delta n_{p}^{0}; \quad \langle \delta n_{p}^{0} \delta n_{k}^{0} \rangle = f_{p}' \delta_{pk}; \qquad f_{p} = (e^{\omega_{p}/T} \mp 1)^{-1}; \ f_{p}' \equiv f_{p}(1 \pm f_{p}).$$

• Couple these particles to σ field: $G\sigma\pi\pi$ (or $g\sigma\bar{N}N$). Think of $m^2\equiv m_0^2+2G\sigma$ as "fluctuating mass". Then

$$\delta n_{p} = \delta n_{p}^{0} + \frac{\partial f_{p}}{\partial m^{2}} 2G\sigma = \delta n_{p}^{0} + \frac{f'_{p}}{\omega_{p}} \frac{G}{T}\sigma$$

• Using $\langle \delta n_p^0 \sigma \rangle = 0$ and $\langle \sigma^2 \rangle = (T/V) \xi^2$.

$$\langle \delta n_{p} \delta n_{k} \rangle = f'_{p} \delta_{pk} + \frac{1}{VT} \frac{f'_{p}}{\omega_{p}} \frac{f'_{k}}{\omega_{k}} G^{2} \xi^{2}.$$

More formal derivation: PRD65:096008,2002

Relation between σ fluctuations and observables

Consider example: fluctuations of multiplicity of pions (or protons).

▶ Free gas: n_p^0 – fluctuating occupation number of momentum mode p. Ensemble (event) average $\langle n_p^0 \rangle = f_p$ and

$$n_{p}^{0} = f_{p} + \delta n_{p}^{0}; \quad \langle \delta n_{p}^{0} \delta n_{k}^{0} \rangle = f'_{p} \delta_{pk}; \qquad f_{p} = (e^{\omega_{p}/T} \mp 1)^{-1}; \ f'_{p} \equiv f_{p}(1 \pm f_{p}).$$

• Couple these particles to σ field: $G\sigma\pi\pi$ (or $g\sigma\bar{N}N$). Think of $m^2\equiv m_0^2+2G\sigma$ as "fluctuating mass". Then

$$\delta n_{\mathbf{p}} = \delta n_{p}^{0} + \frac{\partial f_{\mathbf{p}}}{\partial m^{2}} 2G\sigma = \delta n_{p}^{0} + \frac{f_{\mathbf{p}}'}{\omega_{\mathbf{p}}} \frac{G}{T}\sigma$$

• Using $\langle \delta n_p^0 \sigma \rangle = 0$ and $\langle \sigma^2 \rangle = (T/V) \xi^2$.

$$\langle \delta n_{p} \delta n_{k} \rangle = f'_{p} \delta_{pk} + \frac{1}{VT} \frac{f'_{p}}{\omega_{p}} \frac{f'_{k}}{\omega_{k}} G^{2} \xi^{2}.$$

More formal derivation: PRD65:096008,2002

4-point function

 \blacksquare The 2-particle correlator measures 4-point function at q=0 (for $p\neq k$). Singularity appears at q=0 due to vanishing σ screening mass $m_{\sigma} \to 0$. (i.e., $\xi = 1/m_{\sigma} \rightarrow \infty$).

$$\langle \delta n_p \delta n_k \rangle_{\sigma} = \frac{1}{T} \frac{f_p(1+f_p)}{\omega_p} \frac{f_k(1+f_k)}{\omega_k} \frac{G^2}{m_{\sigma}^2}.$$

 $\frac{1}{m_{\sigma}^{2}} \qquad \langle \delta n_{p} \delta n_{k} \rangle_{\sigma} = \frac{1}{T} \frac{s_{p} (1 + s_{p})}{\omega_{p}} \frac{s_{k} (1 + s_{k})}{\omega_{k}} \frac{s_{k}}{m_{\sigma}^{2}}.$ Check: $\langle \delta n_{p} \delta n_{k} \rangle = \langle n_{p} n_{k} \rangle - \langle n_{p} \rangle \langle n_{k} \rangle > 0$ — as in attraction.

Attraction lowers the energy of a pair (making it more likely) Attraction lowers the energy of a pair (making it more likely) by $\langle H_{\text{interaction}} \rangle \sim$ forward scattering amplitude.

m extstyle extstyle

$$\chi_B \sim \langle \delta B \delta B \rangle_{\sigma} = \langle (\delta N_p - \delta N_{\bar{p}} + \delta N_n - \delta N_{\bar{n}})^2 \rangle_{\sigma} = \langle \delta N_p \delta N_p \rangle_{\sigma} + \dots$$

Each term on r.h.s. is
$$\sim \frac{1}{m_\sigma^2}$$
, $\Rightarrow \langle \delta B \delta B \rangle \sim 1/m_\sigma^2 = \xi^2$.

It is enough to measure protons $\langle \delta N_p \delta N_p \rangle$ (Hatta, MS, PRL91:102003,2003)

Limitations on ξ in heavy-ion collisions

How big can ξ grow?

Limited by:

- Proximity of the critical point
- Finite size of the system $\xi < 6$ fm.
- **Proof.** Finite *time*: $\tau \sim 10$ fm.

Critical slowing down: $\tau_{\text{equillibration}} \sim \xi^z$. z > 1 – dynamical critical exponent.

$$\xi_{\rm max} \sim au^{1/z} \sim (2-3) {
m fm}$$

Dynamic universality class of liquid-gas phase transition, i.e., $z\approx 3$:

— Critical mode – diffusive: $\omega \sim iDq^2$,

-
$$D = \frac{\lambda_B}{\chi_B}$$
 - 0 at c.p. $2 + 1 = 3$.
(Son, MS, PRD70:056001,2004)

(Berdnikov, Rajagopal, PRD61:105017,2000)

Higher moments (cumulants) of fluctuations

Consider probability distribution for the order-parameter field:

$$P[\sigma] \sim \exp\left\{-\Omega[\sigma]/T\right\},$$

 Ω – effective potential:

$$\Omega = \int d^3x \left[\frac{1}{2} (\nabla \sigma)^2 + \frac{m_\sigma^2}{2} \sigma^2 + \frac{\lambda_3}{3} \sigma^3 + \frac{\lambda_4}{4} \sigma^4 + \ldots \right] . \qquad \Rightarrow \quad \xi = m_\sigma^{-1}$$

● Moments of zero-momentum mode $\sigma_0 \equiv \int d^3x \, \sigma(x)/V$.

$$\kappa_2 = \langle \sigma_0^2 \rangle = \frac{T}{V} \, \xi^2 \, ; \qquad \kappa_3 = \langle \sigma_0^3 \rangle = \frac{2\lambda_3 T^2}{V^2} \, \xi^6 \, ;$$

$$\kappa_4 = \langle \sigma_0^4 \rangle_c \equiv \langle \sigma_0^4 \rangle - \langle \sigma_0^2 \rangle^2 = \frac{6T^3}{V^3} [2(\lambda_3 \xi)^2 - \lambda_4] \, \xi^8 \, .$$

▶ Tree graphs. Each zero-momentum propagator gives m_{σ}^{-2} , i.e., ξ^{2} .

Moments of observables

Use multiplicity for an example. Since multiplicity is just the sum of all occupation numbers, and thus

$$\delta N = \sum_{p} \delta n_{p},$$

the cubic moment (skewness) of the pion multiplicity distribution is given by

$$\langle (\delta N)^3 \rangle = \sum_{\boldsymbol{p}_1} \sum_{\boldsymbol{p}_2} \sum_{\boldsymbol{p}_3} \langle \delta n_{\boldsymbol{p}_1} \delta n_{\boldsymbol{p}_2} \delta n_{\boldsymbol{p}_3} \rangle \,, \qquad \text{where } \sum_{\boldsymbol{p}} = V \int d^3 \boldsymbol{p}/(2\pi)^3.$$

$$\langle \delta n_{\boldsymbol{p}_1} \delta n_{\boldsymbol{p}_2} \delta n_{\boldsymbol{p}_3} \rangle_{\sigma} = \frac{2\lambda_3}{V^2 T} \left(\frac{G}{m_{\sigma}^2} \right)^3 \frac{v_{\boldsymbol{p}_1}^2}{\omega_{\boldsymbol{p}_1}} \frac{v_{\boldsymbol{p}_2}^2}{\omega_{\boldsymbol{p}_2}} \frac{v_{\boldsymbol{p}_3}^2}{\omega_{\boldsymbol{p}_3}}$$
$$v_{\boldsymbol{p}}^2 = \bar{n}_{\boldsymbol{p}} (1 \pm \bar{n}_{\boldsymbol{p}})$$

Similarly for $\langle (\delta N)^4 \rangle_c$.

Since $\langle (\delta N)^3 \rangle$ scales as V^1 it is convenient to normalize it by the mean total multiplicity \bar{N} which scales similarly. Thus we define

$$\omega_3(N) \equiv \frac{\langle (\delta N)^3 \rangle}{\bar{N}}$$

Moments of observables contd.

... and find

$$\omega_3(N)_{\sigma} = \frac{2\lambda_3}{T} \frac{G^3}{m_{\sigma}^6} \left(\int_{\mathbf{p}} \frac{v_{\mathbf{p}}^2}{\omega_{\mathbf{p}}} \right)^3 \left(\int_{\mathbf{p}} \bar{n}_{\mathbf{p}} \right)^{-1}.$$

Similarly, for

$$\omega_4(N) \equiv \frac{\langle (\delta N)^4 \rangle_c}{\bar{N}}$$

from

we find

$$\omega_4(N)_{\sigma} = \frac{6}{T} \left[2 \frac{\lambda_3^2}{m_{\sigma}^2} - \lambda_4 \right] \frac{G^4}{m_{\sigma}^8} \left(\int_{\boldsymbol{p}} \frac{v_{\boldsymbol{p}}^2}{\omega_{\boldsymbol{p}}} \right)^4 \left(\int_{\boldsymbol{p}} \bar{n}_{\boldsymbol{p}} \right)^{-1}.$$

Moments of observables contd.

... and find

$$\omega_3(N)_{\sigma} = \frac{2\lambda_3}{T} \frac{G^3}{m_{\sigma}^6} \left(\int_{\mathbf{p}} \frac{v_{\mathbf{p}}^2}{\omega_{\mathbf{p}}} \right)^3 \left(\int_{\mathbf{p}} \bar{n}_{\mathbf{p}} \right)^{-1}.$$

Similarly, for

$$\omega_4(N) \equiv \frac{\langle (\delta N)^4 \rangle_c}{\bar{N}}$$

from

we find

$$\omega_4(N)_{\sigma} = \frac{6}{T} \left[2 \frac{\lambda_3^2}{m_{\sigma}^2} - \lambda_4 \right] \frac{G^4}{m_{\sigma}^8} \left(\int_{\boldsymbol{p}} \frac{v_{\boldsymbol{p}}^2}{\omega_{\boldsymbol{p}}} \right)^4 \left(\int_{\boldsymbol{p}} \bar{n}_{\boldsymbol{p}} \right)^{-1}.$$

Scaling, λ_n

Scaling requires that both λ_3 and λ_4 vanish with a power of ξ given by:

$$\lambda_3 = \tilde{\lambda}_3 T \cdot (T\xi)^{-3/2}, \quad \text{and} \quad \lambda_4 = \tilde{\lambda}_4 \cdot (T\xi)^{-1}, \quad (\eta \ll 1)$$

(because
$$[(\nabla \sigma)^2] = 3 \Rightarrow [\sigma] = 1/2$$
 and $\Rightarrow [\lambda_n] = 3 - n/2$)

Dimensionless couplings $\tilde{\lambda}_3$ and $\tilde{\lambda}_4$ are universal, and for the Ising universality class they have been measured on the lattice.

 \blacktriangleright λ_3 is nonzero:

Scaling, λ_n

Scaling requires that both λ_3 and λ_4 vanish with a power of ξ given by:

$$\lambda_3 = \tilde{\lambda}_3 T \cdot (T\xi)^{-3/2}, \quad \text{and} \quad \lambda_4 = \tilde{\lambda}_4 \cdot (T\xi)^{-1}, \quad (\eta \ll 1)$$

(because
$$[(\nabla \sigma)^2] = 3 \Rightarrow [\sigma] = 1/2$$
 and $\Rightarrow [\lambda_n] = 3 - n/2$)

Dimensionless couplings $\tilde{\lambda}_3$ and $\tilde{\lambda}_4$ are universal, and for the Ising universality class they have been measured on the lattice.

 \blacktriangleright λ_3 is nonzero:

Estimates

Pions (top SPS):

$$\omega_3(N_\pi)_\sigma \equiv rac{\langle (\delta N_\pi)^3
angle}{ar{N}_\pi} pprox 1. \, \left(rac{ ilde{\lambda}_3}{4.}
ight) \left(rac{G}{ ext{300 MeV}}
ight)^3 \left(rac{\xi}{ ext{3 fm}}
ight)^{9/2}$$

$$\omega_4(N_\pi)_\sigma \equiv \frac{\langle (\delta N_\pi)^4 \rangle_c}{\bar{N}_\pi} \approx 12. \left(\frac{2\tilde{\lambda}_3^2 - \tilde{\lambda}_4}{50.}\right) \left(\frac{G}{\text{300 MeV}}\right)^4 \left(\frac{\xi}{\text{3 fm}}\right)^7$$

Protons (top SPS):

$$\omega_3(N_p)_\sigma \equiv \frac{\langle (\delta N_p)^3 \rangle}{\bar{N}_p} \approx 3. \left(\frac{\tilde{\lambda}_3}{4.}\right) \left(\frac{g}{10.}\right)^3 \left(\frac{\xi}{\text{1 fm}}\right)^{9/2}$$

$$\omega_4(N_p)_\sigma \equiv \frac{\langle (\delta N_p)^4 \rangle_c}{\bar{N}_p} \approx 23. \ \left(\frac{2\tilde{\lambda}_3^2 - \tilde{\lambda}_4}{50.}\right) \left(\frac{g}{10.}\right)^4 \left(\frac{\xi}{\text{1 fm}}\right)^7$$

Notes:

- Strong dependence on ξ , compared to $\omega_2 \sim \xi^2$.
- extstyle ext
- Crosscheck: same exponents as baryon number cumulants from scaling/universality:

$$\langle (\delta N_B)^k \rangle_c = V T^{k-1} \frac{\partial^k P(T, \mu_B)}{\partial \mu_B^k} \sim \xi^{k(5-\eta)/2-3}.$$
 $(\eta \ll 1)$

Concluding remarks I

Sign of ω_3 ? Positive for N_{π} and N_p .

Crude argument:

- (a) N_{π} and N_{p} are proxies for s and n_{B} , and
- (b) e.g., $\langle (\delta S)^3 \rangle = T^2 \frac{d^2S}{dT^2} > 0$ below C.P. because $\frac{dS}{dT}$ peaks (Asakawa *et al*).
- **●** Trivial background estimate: $\omega_3(N)_{BE} = \overline{(1+n_p)(1+2n_p)}$.

This is about 1.3 ($\approx 1 + 3 \overline{n_p}$) for pions at T = 120 MeV

$$\omega_4(N)_{\mathrm{BE/FD}} = \overline{(1 \pm n_p)(1 \pm 6n_p(1 \pm n_p))}$$

• Note: $\omega_k(N_{\pi^+} + N_{\pi^-})_{\rm BE} = \omega_k(N_{\pi^+})_{\rm BE}$ – i.e., no cross-correlation. In contrast, for the critical point contribution:

$$\omega_k(N_{\pi^+} + N_{\pi^-})_{\sigma} = 2^{k-1} \omega_k(N_{\pi^+})_{\sigma}.$$

Concluding remarks II

- Measuring $ω_3$ maybe be harder (more statistics needed?) than $ω_2$. More so for $ω_4 \sim \langle (δN)^4 \rangle - 3\langle (δN)^2 \rangle^2 = \mathcal{O}(N^2) - \mathcal{O}(N^2) \sim \mathcal{O}(N^1)$.
- Other, non-critical, sources contribute: remnants of initial fluctuations, flow, jets to name just a few.

- Calculate and subtract background.
- Apply kinematic cuts. (Low pt.)
- Measure bkgnd during the energy scan.

STAR: background is small $\omega_4 \approx 1$ (Poisson).

▶ ■ Non-Gaussian moments have stronger dependence on ξ , and thus are more sensitive signatures of the critical point.